Orthogonal Decomposition Defined by a Pair of Skew-Symmetric Forms

نویسنده

  • B. D
چکیده

Proof. We use induction on n. For n = 1, the result is immediate, First, observe there exist linear transformations Ui (i = 1, 2): X + X such that (U,x, y) = &(x, y). For define&: X -R by Liz(y) = #Q(x, y). Then L,, is a linear functional and since X is an inner product space, there exists Z< E X with L,,(y) = (zi, y) by the canonical isomorphism between X and its dual. Define the transformation U, by zi = Ug; it is easily checked that Ui is linear. The skew-symmetric property of C#Q( *, *) also shows that Ud = Ui*, with Ui* the adjoint of Ui, for (Uix, y) = +i(%, Y) = +i(Ys %) = (UiY> %) = (Y9 U,*X) = (Ui*X, Y).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2

Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...

متن کامل

On Skew-Symmetric Games

By resorting to the vector space structure of finite games, skew-symmetric games (SSGs) are proposed and investigated as a natural subspace of finite games. First of all, for two player games, it is shown that the skew-symmetric games form an orthogonal complement of the symmetric games. Then for a general SSG its linear representation is given, which can be used to verify whether a finite game...

متن کامل

Proof of a decomposition theorem for symmetric tensors on spaces with constant curvature

In cosmological perturbation theory a first major step consists in the decomposition of the various perturbation amplitudes into scalar, vector and tensor perturbations, which mutually decouple. In performing this decomposition one uses – beside the Hodge decomposition for one-forms – an analogous decomposition of symmetric tensor fields of second rank on Riemannian manifolds with constant curv...

متن کامل

Quadratic Pairs in Characteristic 2 and the Witt Cancellation Theorem

We define the orthogonal sum of quadratic pairs and we show that there is no Witt cancellation theorem for this operation in characteristic 2. 1. Introduction. Quadratic pairs on central simple algebras were defined in [5]. They play the same role for quadratic forms as involutions for symmetric or skew-symmetric bilinear forms. In particular, they can be used to define twisted orthogonal group...

متن کامل

Howe Duality for Lie Superalgebras

We study a dual pair of general linear Lie superalgebras in the sense of R. Howe. We give an explicit multiplicity-free decomposition of a symmetric and skew-symmetric algebra (in the super sense) under the action of the dual pair and present explicit formulas for the highest weight vectors in each isotypic subspace of the symmetric algebra. We give an explicit multiplicity-free decomposition i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001